
Introduction

Stored product pests can cause direct losses in product 
weight. They can affect stock, damage products by 
reducing their weight, or contaminate them [1]. Large 
quantities of these crops (during storage) – accounting 
for 5-10% in temperate and 20-30% or more in tropical 
regions – are lost annually due to different insect pests [2]. 
As calculated by Grethe et al. [3], an increase of 48% in 
food production would be sufficient when post-harvest 
losses are seriously reduced [4]. 

Tribolium confusum Jacquelin du Val (Coleoptera: 
Tenebrionidae) is one of the major foodstuff pests 

responsible for important economic losses and is  
still central to the world food supply since cereals  
continue to be the main source of food for people [5-
6]. The confused flour beetle is a cosmopolitan pest of 
stored grains, cereal products, fruit, and nut products, and 
they may infest mills, food warehouses, or retail stores. 
Moreover, they can contaminate processing plants and 
warehouses by whole insects, eggs, insect fragments, and 
frass [7]. 

For years, chemical treatment with insecticides has 
been the method of choice. However, the number of 
available active substances has been shrinking due to 
many reasons [8-9]. Pest management programs for 
stored-product insects inside mills and warehouses may 
include applications with insecticides of different liquid 
formulations, including aerosols [10]. Therefore, aerosol 
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Abstract

In this paper we report the behavioral responses of mated Tribolium confusum to blends of volatiles 
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10 ng.min-1, respectively. Moreover, mated females of tested insects were also attracted to blends 1 and 5. 
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insecticide applications are predicted to cause direct 
mortality only to individuals dispersing between refugia 
and out in open areas because they can either be directly 
exposed to settling droplets or encounter the residual 
insecticide on treated surfaces [11]. The control of these 
insects relies heavily on the use of cost-effective synthetic 
insecticides such as fumigants (mainly phosphine and 
methyl bromide) [12], but their massive use has triggered 
problems such as resistant behavior and environmental 
pollution with negative side effects on human health 
[13-15]. Possible strategies aimed at reducing the use of 
synthetic insecticides include natural insecticide fumigants 
produced by plants [16].

Eco-friendly strategies to prevent such insect attacks 
on final packaged products are therefore highly required, 
e.g., essential oils (extracted from aromatic plants) could 
represent an alternative to chemical treatments due to their 
repellent properties [17-21].

Plants are vulnerable to attack by organisms, but 
even being immobile are not merely passive victims 
[22]. To protect themselves, they have evolved an arsenal 
of physical and chemical defences [23-25], e.g., there 
are many types of volatile organic compounds (VOCs) 
released by plants in response to insect attack (terpenes, 
fatty acid derivatives, benzenoids, phenyl propanoids, and 
amino acid-derived metabolites) [26]. Plant-induced VOC 
defensive functions include directly deterring herbivores 
[27-28], indirectly attracting natural enemies of attackers 
[29], and priming defences of uninjured organs on the same 
plant [30-32]. An insect dose response to an individual 
plant VOC can reveal the range of concentrations over 
which herbivore or parasitoid attraction or repellence 
occurs [33-34].

In the present study, we examined the behavioral 
response of mated adults of T. confusum of both sexes to 
blends of VOCs.

Experimental Procedures

Insects

Experiments were performed in 2014-15 at the UTP 
University of Science and Technology, Bydgoszcz, Poland 
at the Department of Entomology and Molecular Phyto-
pathology. T. confusum were reared on whole wheat ker-
nels in continuous dark at 22±2ºC and relative humidity 
of 60±5%. 

Synthetic Chemicals

Synthetic volatiles were obtained from Sigma-Aldrich 
(Chemical Co. Inc., Poznań, Poland) and their purity 
was 85-99%. Cereal compounds were selected based on 
their presence in cereal grains [35], but plant VOCs were  
chosen based on their presence in various cereal  
green plants as a result of biotic stress [36-38]. To 
screen behavioral activity of the volatile compounds we  
tested six blends at four concentrations (1, 10, 100,  

1,000 ng·min-197) compared to the absence of the com-
pound (0). In the Y-tube, each of the five VOC concentra-
tions in hexane was tested against hexane solvent alone. 
Each of the 98 individual VOCs was present in a blend at 
the specified concentration. Thus for blend 1 (aliphatic al-
cohols), 1 ng·min-1 means that 1 ng 1-BUT + 1 ng 1-PEN 
+ 1 ng 1-HEX + 1 ng 3-MET was added to 50 μl hexane. 
A dose of a blend was placed in one arm of the Y-tube and 
tested against 50 μl hexane without the blend (0 ng·min-1).

Y-tube

Insects of both sexes were exposed to each other for 
72h in a cage where food was also supplied. After three 
days they were separated (different cages) and following 
another 24h the experiment were begun. Beetles tended 
to walk along the Y-tube (this system has been previous-
ly tested on various insect species) [21]. Twenty adult T. 
confusum of each sex were tested (20♀ and 20♂ for each 
blend) at each concentration for six blended VOCs. Adults 
were observed for 5 min.

Data Analysis

Chi-square goodness of fit tests (Χ2-test) with the  
Yates correction for small samples (1×2) were conducted  
to indicate whether the choice of Y-tube arms was 
influenced by a preference for odor source (synthetic blend 
vs. hexane solvent) at each exposure concentration × sex × 
exposure duration combination. Non-significant tests indi-
cated that the observed beetle counts did not significantly 
deviate from an expected ratio of 10:10 (the hexane sol-
vent only arm and synthetic blend). Significant tests indi-
cated attraction (more individuals chose The Y-tube arm 
with a synthetic blend) or repellency (more individuals 
chose the Y-tube arm with only hexane solvent).

Discussion of Results

We found in our behavioral responses of mated 
confused flour beetles that mated females of T. confusum 
were attracted to blends 1, 4, and 5 at concentrations of 
100 ng.min-1, 100 ng.min-1, 1 and 10 ng.min-1, respectively 
(Tables 1, 4, 5). In contrast, mated males were attracted 
only to blend 5 at a concentration of 10 ng.min-1. Both 
sexes were repelled by the highest concentration (1,000 
ng·min-1) for all tested blends. Additionally, both mated 
sexes were repelled by 100 ng·min-1 in blends 2, 3, 5, and 
6 (Tables 2, 3, 5, 6)..  

The above results are in good agreement with those of 
Zoubiri and Baaliouamer [39], who tested the bioactivity 
of the essential oil extracted by hydrodistillation from 
Lantana camara leaves and found that the composition 
of L. camara essential oil included large amounts of 
sesquiterpene – mainly β-caryophyllene and caryophyllene 
oxide. Ziaee et al. [40] found that essential oil had strong 
fumigant toxicity against adult insects; however, toxicity 
diminished in the presence of wheat commodity. Plant 
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essential oil synergized the performance of diatomaceous 
earth (DE) samples such that they generally became 
more insecticidal than DE alone. Nenaah [2] found that 
essential oils of Achillea biebersteinii, A. santolina, and 
A. mellifolium showed considerable toxic and growth 
inhibitory activities against the red flour beetle, Tribolium 

castaneum (Herbst). Germinara et al. [35] demonstrated 
that at the end of the aging period, the percentage of S. 
granarius adults found in cartons coated with propionic 
acid-loaded mono and multilayer PCL and zein was only 
13.1%, 11.3%, 18.0%, and 10.7% of the total number of 
insects used in the bioassay, respectively. Piesik et al. 

Table 1. Effect of synthetic blend No. 1 of four aliphatic alcohols [1-BUT +  1-PEN + 1-HEX + 3-MET] on the number of mated 
Tribolium confusum adult females and males choosing to enter a Y-tube arm containing the blend odor or the Y-tube arm containing 
purified humidified air and hexane solvent (no odor).

Table 2. Effect of synthetic blend No. 2 of eight aliphatic aldehydes [BUT +  PEN + HEX + HEP + (E)-2-HEX + (E,E)-2,4-HEP + 
(E,E)-2,4-NON + (E,E)-2,4-DEC] on the number of mated Tribolium confusum adult females and males choosing to enter a Y-tube arm 
containing the blend odor or the Y-tube arm containing purified humidified air and hexane solvent (no odor).

Table 3. Effect of synthetic blend No. 3 of four aliphatic ketones [2-PEN + 2-HEX + 2-HEP + 2,3-BUT] on the number of mated 
Tribolium confusum adult females and males choosing to enter a Y-tube arm containing the blend odor or the Y-tube arm containing 
purified humidified air and hexane solvent (no odor).

Name of mixed  
compounds Dose ng.min-1

No. of females No. of males
+ 4 – 5 χ2 (1) + 4 – 5 χ2 (1)

Control 0.0 7 13 1.25 ns 11 9 0.05 ns

1-BUT 1 1 8 12 0.45 ns 10 10 0.05 ns

+ 1-PEN 2 10 9 11 0.05 ns 13 7 1.25 ns

+ 1-HEX 3 100 16 4 6.05* (a) 3 14 6 2.45 ns

+ 3-MET 4 1000 3 17 8.45** (r) 2 4 16 6.05* (r) 2

Legend:
(1) level of significance (ns: non-significant), (*p<0.05), (**p<0.01), (***p<0.001)
2 r: repellent
3 a: attractant
4 + Y: tube arm with the tested amount of the compound, volatile diluted in hexane emitted from filter paper
5 – Y: tube arm only with hexane emitted from filter paper

Name of mixed  
compounds Dose ng.min-1

No. of females No. of males
+ 4 – 5 χ2 (1) + 4 – 5 χ2 (1)

BUT
+ PEN Control 0.0 10 10 0.05 ns 13 7 1.25 ns

+ HEX 1 1 11 9 0.05 ns 8 12 0.45 ns

+ HEP 2 10 14 6 2.45 ns 11 9 0.05 ns

+ (E)-2-HEX 3 100 4 16 6.05* (r) 2 4 16 6.05 * (r) 2

+ (E,E)-2,4-HEP 
+ (E,E)-2,4-NON 
+ E,E)-2,4-DEC

4 1000 2 18 11.3*** (r) 2 3 17 8.45** (r) 2

Name of mixed  
compounds Dose ng.min-1

No. of females No. of males
+ 4 – 5 χ2 (1) + 4 – 5 χ2 (1)

Control 0.0 14 6 2.45 ns 13 7 1.25 ns

2-PEN 1 1 9 11 0.05 ns 7 13 1.25 ns

+ 2-HEX 2 10 11 9 0.05 ns 11 9 0.05 ns

+ 2-HEP 3 100 3 17 8.45** (r) 2 5 15 4.05 * (r) 2

+ 2,3-BUT 4 1000 3 17 8.45** (r) 2 4 16 6.05* (r) 2
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[41] found attraction to synthetic components for adult 
cereal leaf beetles Oulema melanopus L. (Coleoptera: 
Chrysomelidae) at 7,500 ng·h-1 for two GLVs ((Z)-3-
hexenal, (Z)-3-hexen-1-yl acetate) and two terpenes 
(linalool and β-caryophyllene), and attraction at lower 
doses of 60 ng·h-1 for ((Z)-3-hexenal, (Z)-3-hexen-1-yl 
acetate, and 300 ng·h-1 for linalool. 

Chemical Compounds 
and Abbreviation List

VOCs = volatile organic compounds; blend 1 - aliphatic 
alcohols (1-Butanol = 1-BUT, 1-Pentanol = 1-PEN, 
1-Hexanol = 1-HEX, 3-Methyl-1-butanol = 3-MET); blend 
2 - aliphatic aldehydes (Butanal = BUT, Pentanal = PEN, 

Name of mixed  
compounds Dose ng.min-1

No. of females No. of males
+ 4 – 5 χ2 (1) + 4 – 5 χ2 (1)

(Z)-OCI Control 0.0 10 10 0.05 ns 12 8 0.05 ns

+ LIN 1 1 8 12 0.45 ns 14 6 2.45 ns

+ BAC 2 10 7 13 1.25 ns 10 10 0.05 ns

+ MAT 3 100 2 18 11.3*** (r) 4 16 6.05 * (r) 2

+ β-CAR 
+ (E)-β-FAR 4 1000 2 18 11.3*** (r) 2 3 17 8.45** (r) 2

Legend:
(1) level of significance (ns: non-significant), (*p<0.05), (**p<0.01), (***p<0.001)
2 r: repellent
3 a: attractant
4 + Y: tube arm with the tested amount of the compound, volatile diluted in hexane emitted from filter paper
5 – Y: tube arm only with hexane emitted from filter paper

Table 4. Effect of synthetic blend No. 4 of four aromatics [MAL, FUR, PHE, VAN] on the number of mated Tribolium confusum adult 
females and males choosing to enter a Y-tube arm containing the blend odor or the Y-tube arm containing purified humidified air and 
hexane solvent (no odor).

Table 5. Effect of synthetic blend No. 5 of aliphatic alcohols, aliphatic aldehydes, aliphatic ketones, and aromatics on the number 
of mated Tribolium confusum adult females and males choosing to enter a Y-tube arm containing the blend odor or the Y-tube arm 
containing purified humidified air and hexane solvent (no odor).

Table 6. Effect of synthetic blend No. 6 of six plant VOCs [(Z)-OCI, LIN, BAC, MAT, β-CAR, (E)-β-FAR] on the number of mated Tri-
bolium confusum adult females and males choosing to enter a Y-tube arm containing the blend odor or the Y-tube arm containing purified 
humidified air and hexane solvent (no odor).

Name of mixed  
compounds Dose ng.min-1

No. of females No. of males
+ 4 – 5 χ2 (1) + 4 – 5 χ2 (1)

Control 0.0 8 12 0.45 ns 10 10 0.05 ns

MAL 1 1 12 8 0.45 ns 10 10 0.05 ns

+ FUR 2 10 7 13 1.25 ns 13 7 1.25 ns

+ PHE 3 100 16 4 6.05 * (a) 3 15 5 4.05 * (r) 2

+ VAN 4 1000 2 18 11.3*** (r) 2 3 17 8.45** (r) 2

Name of mixed  
compounds Dose ng.min-1

No. of females No. of males
+ 4

– 5 χ2 (1) + 4 – 5 χ2 (1)

Control 0.0 7 13 1.25 ns 11 9 0.05 ns

aliphatic alcohols 1 1 16 4 6.05 * (a) 3 10 10 0.05 ns

+ aliphatic aldehydes 2 10 16 4 6.05 * (a) 3 16 4 6.05 * (a) 3

+ aliphatic ketones 3 100 3 17 8.45** (r) 2 5 15 4.05 * (r) 2

+ aromatics 4 1000 2 18 11.3*** (r) 2 3 17 8.45** (r) 2
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Hexanal = HEX, Heptanal = HEP, (E)-2- Hexenal = (E)-2-
HEX, (E,E)-2,4-Heptadienal = (E,E)-2,4-HEP, (E,E)-2,4-
Nonadienal = (E,E)-2,4-NON, (E,E)-2,4-Decadienal = 
(E,E)-2,4-DEC); blend 3 - aliphatic ketones (2- Pentanone 
= 2-PEN, 2-Hexanone = 2-HEX, 2-Heptanone = 2-HEP, 
2,3-Butanedione = 2,3-BUT); blend 4 - aromatics (3-Me-
thoxy-2-methyl-4-pyrone (maltol) = MAL, 132 Furfural = 
FUR, Phenylacetaldehyde = PHE, 3-Methoxy-4-hydroxy-
benzaldehyde (vanillin) = VAN); blend 5 - aliphatic al-
cohols, aliphatic aldehydes, aliphatic ketones, aromatics, 
blend 6 – plant VOCs ((Z)-ocimene = (Z)-OCI, linalool 
= LIN, benzyl acetate = BAC, methyl salicylate = MAT, 
β-caryophyllene = β-CAR, (E)-β-farnesene = (E)-β-FAR).
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